A Brief History: Who Developed Inductive Learning? Inductive learning, a fundamental concept in machine learning, originates from the principles of inductive reasoning studied by Aristotle. In the 20th century, pioneers like Alan Turing and Tom Mitchell applied these principles to …
A Brief History of Label Spreading: Who Developed It? Label spreading, like its sibling label propagation, was developed from the foundations of graph theory and became integral to semi-supervised learning. Researchers sought to improve upon label propagation by introducing a …
A Brief History: Who Developed the Manifold Assumption? The manifold assumption, a foundational concept in semi-supervised learning (SSL), became widely recognized in the late 1990s and early 2000s. Researchers like Sam Roweis, Lawrence Saul, and Joshua Tenenbaum contributed to its …
A Brief History: Who Developed the Huber Cost Function? The Huber cost function, also known as Huber loss, was introduced by Peter J. Huber in 1964. Huber, a Swiss statistician, developed this function to create a robust method for regression …
Imagine an archer aiming at a target: the sharpness of the arrow determines how closely it can hit the bullseye. The Cramér-Rao Bound is like the sharpness of an estimator—it defines the theoretical lower limit of variance for an unbiased …